
MovieLens Report

Guus Bouwens

9/17/2024

###Introduction

A recommender system or a recommendation system is a subclass of information filtering system that seeks
to predict the “rating” or “preference” a user would give to an item. Recommendation systems use ratings
that users have given items to make specific recommendations. Companies that sell many products to many
customers and permit these customers to rate their products, use customers rating to predict their preferences
or rating for another item. Netflix uses a recommendation system to predict if user rating for specific movies.
motivated by some of the approaches taken by the winners of the Netflix challenges, On October 2006, Netflix
offered a challenge to the data science community: improve our recommendation algorithm by 10% and win
a million dollars. In September 2009, the winners were announced. You can read a good summary of how
the winning algorithm was put together here and a more detailed explanation here. We will now show you
some of the data analysis strategies used by the winning team.

this assignment is to accomplish a similar goal which is to build a recommendation system that recommends
movies based on a rating scale.

##Data set for this project the MovieLens Data set collected by GroupLens Research and can be found in
MovieLens web site (http://movielens.org).

##Data Loading the data set is loaded using the code provided by course instucture in this link https:
//bit.ly/2Ng6tVW which split the data into edx set and 10% validation set. the edx set will be split into
training and test set,and validation set will be used to final evaluation.

###
Create edx set, validation set, and submission file
###

Note: this process could take a couple of minutes

if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")

MovieLens 10M dataset:
https://grouplens.org/datasets/movielens/10m/
http://files.grouplens.org/datasets/movielens/ml-10m.zip

dl <- tempfile()
download.file("http://files.grouplens.org/datasets/movielens/ml-10m.zip", dl)

ratings <- read.table(text = gsub("::", "\t", readLines(unzip(dl, "ml-10M100K/ratings.dat"))),
col.names = c("userId", "movieId", "rating", "timestamp"))

movies <- str_split_fixed(readLines(unzip(dl, "ml-10M100K/movies.dat")), "\\::", 3)
colnames(movies) <- c("movieId", "title", "genres")

1

http://movielens.org
https://bit.ly/2Ng6tVW
https://bit.ly/2Ng6tVW

movies <- as.data.frame(movies) %>% mutate(movieId = as.numeric(levels(movieId))[movieId],
title = as.character(title),
genres = as.character(genres))

movielens <- left_join(ratings, movies, by = "movieId")

Validation set will be 10% of MovieLens data

set.seed(1)
test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE)
edx <- movielens[-test_index,]
temp <- movielens[test_index,]

Make sure userId and movieId in validation set are also in edx set
#validation set

validation <- temp %>%
semi_join(edx, by = "movieId") %>%
semi_join(edx, by = "userId")

Add rows removed from validation set back into edx set

removed <- anti_join(temp, validation)

Joining with ‘by = join_by(userId, movieId, rating, timestamp, title,
genres)‘

edx <- rbind(edx, removed)

rm(dl, ratings, movies, test_index, temp, movielens, removed)

###
###

before the analysis we check for any NA value

anyNA(edx)

[1] TRUE

Data Summary and Explortory Data Analysis

after loading the data set we start by looking at the data structure and type we can see that there is six
variable (userId,movieID,rating,timestamp,title,genres).as shown the year need to be seperated from title if
needed for prediction also the genres need sepration if needed.

str(edx)

’data.frame’: 9000061 obs. of 6 variables:
$ userId : int 1 1 1 1 1 1 1 1 1 1 ...

2

$ movieId : num 122 185 231 292 316 329 355 356 362 364 ...
$ rating : num 5 5 5 5 5 5 5 5 5 5 ...
$ timestamp: int 838985046 838983525 838983392 838983421 838983392 838983392 838984474 838983653 838984885 838983707 ...
$ title : chr NA NA NA NA ...
$ genres : chr NA NA NA NA ...

summary(edx)

userId movieId rating timestamp
Min. : 1 Min. : 1 Min. :0.500 Min. :7.897e+08
1st Qu.:18122 1st Qu.: 648 1st Qu.:3.000 1st Qu.:9.468e+08
Median :35743 Median : 1834 Median :4.000 Median :1.035e+09
Mean :35869 Mean : 4120 Mean :3.512 Mean :1.033e+09
3rd Qu.:53602 3rd Qu.: 3624 3rd Qu.:4.000 3rd Qu.:1.127e+09
Max. :71567 Max. :65133 Max. :5.000 Max. :1.231e+09
title genres
Length:9000061 Length:9000061
Class :character Class :character
Mode :character Mode :character
##
##
##

from the summary of data we see that the minimum rating is 1 and max is 5 and the mean for the rating is
3.512 and the mode is 4.0.

Selecting by count

A tibble: 5 x 2
rating count
<dbl> <int>
1 4 2588021
2 3 2121638
3 5 1390541
4 3.5 792037
5 2 710998

this code prints the number of unique movies and users in the data set:

n_users n_movies
1 69878 10677

to see how the number of ratings for every movie, we do that by plotting histogram

3

0

250

500

750

1 10 100 1000 10000
n

co
un

t
 number of Rating per Movie

We note that some movies get more ratings it could be due to popularity. Now we visualize the number of
ratings for each user

4

0

5000

10000

10 100 1000 10000
n

co
un

t
 Number of Rating Per User

we see that some user are active more than others at rating movies.

Now let’s plot the rating for each movie genre

5

0

2500000

5000000

7500000

NA
genres

co
un

t genres

NA

 Number of Rating for Each Genre

let’s see the top 10 most popular genre

A tibble: 1 x 2
genres count
<chr> <int>
1 <NA> 9000061

##Data Partitioning
before building the model we partition the edx data set into 20% for test set and 80% for the training set.

set.seed(1)
test_index <- createDataPartition(y = edx$rating, times = 1, p = 0.2, list = FALSE)
train_set <- edx[-test_index,]
test_set <- edx[test_index,]

Model building and RMSE calculation

The Netflix challenge used typical error loss. They decided on a winner based on the residual mean squared
error (RMSE) on a test set. The RMSE will be the measure of accuracy.

RMSE <- function(true_ratings, predicted_ratings){
sqrt(mean((true_ratings - predicted_ratings)ˆ2, na.rm = TRUE))

}

6

###First Model In the first model, we predict the same rating for all movies regardless of the user. a model
that assumes the same rating for all movies and users. no bias are considered here. this method assumes
the following linear equation is true: Y u, i =??+?? u, i

Mu_1 <- mean(train_set$rating)
Mu_1

[1] 3.51238

naive_rmse <- RMSE(test_set$rating,Mu_1)
naive_rmse

[1] 1.059648

this code creates a table for the RMSE result to store all the result from each method to compare.

rmse_results <- data_frame(method = "Just the average", RMSE = naive_rmse)
rmse_results%>% knitr::kable()

method RMSE
Just the average 1.059648

###Second Model| Movie Effect As we saw on the exploratory analysis some movies are rated more than
other we can augment our previous model by adding the term b i to represent the average ranking for movie
i We can again use least squared to estimate considering the movie bias, in statics they refer to b as effect
but in the Netflix paper referred them as “Bias” Y u, i =?? + b i +?? u, i Because there are thousands b i,
each movie gets one, the lm() function will be very slow here. so we compute it using the average this way :

Mu_2 <- mean(train_set$rating)
movie_avgs <- train_set %>%

group_by(movieId) %>%
summarize(b_i = mean(rating - Mu_2))

we can see that variability in the estimate as plotted here

7

0

1000

2000

3000

−3 −2 −1 0 1 2
b_i

let’s see how the prediction improves after altering the equation Y u, i =?? + b i

predicted_ratings <- Mu_2 + test_set %>%
left_join(movie_avgs, by='movieId') %>%
pull(b_i)

model_2_rmse <- RMSE(predicted_ratings, test_set$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method="Movie Effect Model",
RMSE = model_2_rmse))

rmse_results %>% knitr::kable()

method RMSE
Just the average 1.0596481
Movie Effect Model 0.9431724

###Third Model| User Effect let’s compure the user u for , for those who rated over 100 movies.

8

0

2500

5000

7500

10000

1 2 3 4 5
b_u

co
un

t

Notice that there is substantial variability across users ratings as well. This implies that a further improve-
ment to our model may be Y u, i =?? + b i +?? u, i we could fit this model by using use the lm() function
but as mentioned earlier it would be very slow lm(rating as.factor(movieId) + as.factor(userId)) so here
is the code

user_avgs <- train_set %>%
left_join(movie_avgs, by='movieId') %>%
group_by(userId) %>%
summarize(b_u = mean(rating - Mu_2 - b_i))

now let’s see how RMSE improved this time

predicted_ratings <- test_set %>%
left_join(movie_avgs, by='movieId') %>%
left_join(user_avgs, by='userId') %>%
mutate(pred = Mu_2 + b_i + b_u) %>%
pull(pred)

model_3_rmse <- RMSE(predicted_ratings, test_set$rating)
rmse_results <- bind_rows(rmse_results,

data_frame(method="Movie + User Effects Model",
RMSE = model_3_rmse))

rmse_results%>% knitr::kable()

9

method RMSE
Just the average 1.0596481
Movie Effect Model 0.9431724
Movie + User Effects Model 0.8655154

RMSE of the validation set

valid_pred_rating <- validation %>%
left_join(movie_avgs , by = "movieId") %>%
left_join(user_avgs , by = "userId") %>%
mutate(pred = Mu_2 + b_i + b_u) %>%
pull(pred)

model_3_valid <- RMSE(validation$rating, valid_pred_rating)
rmse_results <- bind_rows(rmse_results, data_frame(Method = "Validation Results" , RMSE = model_3_valid))
rmse_results%>% knitr::kable()

method RMSE Method
Just the average 1.0596481 NA
Movie Effect Model 0.9431724 NA
Movie + User Effects Model 0.8655154 NA
NA 0.8666188 Validation Results

Conclusion

I have developed a naive approach, movie effect and user+movie effect the best RMSE given by the third
model. for further analysis more complicated prediction using the release year of the movie as a bias
considering old movies such as the 60 or 80 periods as another genre for a better predicting model. a linear
model for precision is recommended.

10

	Data Summary and Explortory Data Analysis
	Model building and RMSE calculation
	RMSE of the validation set
	Conclusion

